
ESPM5295	 Model	Builder,	Assignment	2

Model	Builder,	Selection	and	Portability	
Our	purpose	here	is	to	develop	more	practice	with	model	builder,	and	to	automate	
portions	of	your	workClow	to	ease	multiple	runs	during	your	runoff	mitigation	
development.	

There	were	three	main	“branches”	in	the	example	Clowchart	provided	earlier	in	the	
semester;	one	that	calculated	net	rainfall	(red,	below),	one	that	calculated	
inCiltration	(green),	and	a	third	that	calculated	watersheds	(blue	below).			

While	you	may	have	opted	for	a	different	workClow	that	that	embodied	in	this	
Clowchart,	your	approach	will	likely	include	something	similar	to	the	three	branches.	
For	example,	a	vector-only	approach	could	duplicate	these	three	branches,	but	
substitute	a	set	of	overlays,	calculations,	and	recodings	for	the	raster	conversions	
and	raster	algebra	on	the	right	side	of	this	Clowchart.	

Your	various	model	runs	involve	modifying	inputs,	e.g.,	canopy,	building	roof	type	or	
surface	permabilities,	or	watershed	pour	points,	and	then	re-running	the	analysis.	

This	sort	of	repeat	analysis	could	be	greatly	eased	by	models	which	allow	you	to	
change	those	inputs,	but	run	the	same	model	steps	in	a	more	or	less	automated	
fashion.	

Your	Previous	Model	Builder	assignment	incorporated	the	watershed	branch	into	a	
model.	

Your	assignment	this	week	is	to	write	models	for	some	version	of	the	net	rainfall	
branch	and	the	inCiltration	branch.	

	

ESPM5295	 Model	Builder,	Assignment	2

In5iltration	Branch	Example	
The	objective	of	this	model	is	to	create	a	layer	with	a	column	for	maximum	
inCiltrations	rates,	combining	buildings,	impervious	surface,	and	soils	layers.	

In	our	problem,	it	is	likely	we	will	modify	our	pervious	surface	layer,	changing	some	
of	the	impervious	surfaces	to	pervious	surfaces,	and	modify	the	original	buildings	
layer,	converting	some	of	the	Clat	roofs	to	green	roofs.	

Therefore,	we	want	at	least	the	buildings	and	perviousness	layers	as	a	parameter	
that	can	be	changed	with	each	run.	

A	few	starting	assumptions:		
First,	I	won’t	be	modifying	the	initial	soils	layer	between	model	runs.	I’ll	make	it	a	
parameter,	because	that	provides	more	Clexibility	for	your	main	input	data,	but	I	
don’t	need	to,	so	could	leave	it	as	a	Cixed	data	set	since	I	won’t	be	changing	any	soils	
polygons	or	table	data	between	runs.			
	
Also	note	that	the	soils	data	has	already	been	clipped	
(below	left),	and	a	
proper	table	item	
for	the	maximum	
inCiltration	rates	
for	underlying	
soils	created	and	
with	the	proper	
values,		named	
Soil_InCl,	as	shown	
in	the	table	at	
right.	There	are	
other	columns	in	
the	table,	hidden	
in	this	view.	
	
The	Building	Footprints	layers	
has	a	column	listing	roof	type.		

I	assume	the	modiCied	
building	footprints	layer	has	
assigned	a	Roof	value	of	
“Green”	for	the	Clat	roofs	
converted	to	green	roofs.	

ESPM5295	 Model	Builder,	Assignment	2

The	layer	Perviousness	contains	
a	Cield	that	identiCies	impervious	
surfaces:	

Our	original	Clowchart	showed	the	branch	as	something	like	this:	

	

The	original	Clowchart	showed	us	unioning	the	Pervious	and	Building	Footprints	
layer,	here	called	BldPrv.	However,	as	you’ve	discovered	in	your	analysis,	this	union	
results	in	a	null	or	unassigned	values	for	the	TYPE	column,	the	variable	that	records	
pervious	status,	for	building	polygons	in	the	union	output.	It	also	resulted	in	null	or	
unassigned	output	for	the	Roof	value	in	the	polygons	from	the	perviousness	layer	
(see	arrows,	below	right).		These		

We	need	to	Cix	this,	as	we	want	to	record	the	status	of	the	surface	into	one	column.	

ESPM5295	 Model	Builder,	Assignment	2

	

Here,	I’ll	choose	to	record	the	roof’s	impervious	status	into	the	TYPE	column,	to	use	
in	further	processing.		I	need	to	assign	“Impervious”	to	the	Type	column	for	the	
polygons	with	pitched	or	Clat	roofs,	and	“Pervious”	to	the	TYPE	column	for	buildings	
with	Green	roofs.	

When	processing	manually,	you	would	most	likely	do	this	with	a	Select	by	Attributes	
tool,	and	then	a	Calculate	Field	tool.		This	sequence	doesn’t	work	in	Model	Builder,	
because	the	calculate	Cield	tool,	when	done	manually,	only	operates	on	a	selected	set,	
if	there	is	one.	Model	Builder	doesn’t	do	this.		

Fortunately,	we	can	use	syntax	within	the	Calculate	Field	tool	to	select	while	
calculating.		

I	build	my	
model	by	
dragging	and	
connecting	the	
appropriate	
inputs	and	
command:	
	
I	then	open	
the	Calculate	
Field	bubble	
on	my	model	
canvas,	and	
indicate	the	

ESPM5295	 Model	Builder,	Assignment	2

Input	Table,	Field	I’ll	be	modifying,	entering	
an	expression	in	the	window	at	the	bottom.	

Take	care	to	note	that	this	is	an	Arcade	
Expression	Type	(see	arrow	at	right)	

The	window	at	the	bottom	shows	the	
expression	assigned	to	TYPE.	

This	is	a	selection/assignment,	with	the	
When	(part	signifying	the	conditional	
assignment.	

The	$feature.		indicates	that	we	want	to	
cycle	through	all	the	features	in	the	input	
table.		Then	comes	the	condition;	the	Cirst	
line	
$feature.TYPE	==	“Impervious”,	“Impervious”,	

is	interpreted	as:	wherever	you	Cind	a	TYPE	
value	of	Impervious,	assign	it	a	value	of	
Impervious.	

The	clever	parts	start	at	the	third	line,	with		
$feature.Roof	==	“FLAT”,	“Impervious”,	

This	allows	us	to	assign	a	TYPE	value	of	
Impervious	whenever	the	Roof	is	FLAT.	

The	rest	of	the	expression	is	similar,	
assigning	values	based	on	a	set	of	
conditions.		Note	that	there	is	a	Cinal	
“NotAssigned”	Clag,	if	none	of	our	conditions	
apply	to	a	feature.		Also	note	the	commas	following	each	
condition,	and	the	general	syntax.	Model	Builder	is	pretty	
unforgiving	for	errors	in	format	or	content.	

After	running	the	Calculate	Field	command,	I	check	and	note	
that	the	TYPE	column	is	correctly	assigned	for	my	polygons	
that	came	from	the	Building	Footprints	layer,	but	are	now	part	
of	my	unioned	perviousness	layer:	

ESPM5295	 Model	Builder,	Assignment	2

Our	Clowchart	shows	the	next	step	as	a	union	of	soils	with	our	buildings	and	
previous	layer:	

When	implemented	in	Model	Builder,	it	looks	something	like	this:	
 

ESPM5295	 Model	Builder,	Assignment	2

After	running	the	above	model,	the	table	for	the	output	combined	soils/buildings/
perviousness	layer	looks	something	like	this,	below:	

	

	It	is	close	to	what	we	want,	in	that	we	have	our	various	types	combined.		However,	
the	inCiltration	of	impervious	surfaces	should	be	set	to	zero,	as	they	are	impervious.	

In	addition,	the	inCiltration	for	green	roofs	should	be	set	to	their	maximum	value.	

It	is	perhaps	safest	to	create	a	new	column,	and	calculate	the	maximum	inCiltration	
into	that	column.		I	can	drag	the	Add	Field	operation	onto	the	Model	Builder	Canvas,	
and	specify	the	input,	a	new	Cield	and	type	(I	named	it	MaxIn5l,	type	double,	
precision	12	and	scale	5).	

I	can	then	use	Calculate	Field	and	a	When	conditional	assignment	to	assign	the	
proper	values	to	my	MaxInCl	variable.	I	might	create	an	Arcade	assignment	equation	
something	like	this:		

Remember	in	this	syntax,	it	checks	each	
row,	and	if	it	is	impervious,	it	assigns	and	
inCiltration	of	zero.	My	previous	
processing	ensures	this	converts	both	
the	impervious	roofs	and	land	surface	to	
zero	inCiltration.	But	since	I	haven’t	set	
an	inCiltration	rate	for	green	roofs,	I	need	
to	do	that	now	(Note	that	the	Cigure	
should	read	0.05	rather	than	0.5	for	
Green	roofs).	The	rest	of	the	polygons	are	
previous,	and	get	the	underlying	soil	
inCiltration	rates.	

ESPM5295	 Model	Builder,	Assignment	2

There	is	one	wrinkle	that	we	might	Cind	disconcerting.	If	I	look	at	the	input	table,	
there	are	two	columns	named	type:	

How	can	I	be	sure	that	my	selection	will	work	on	the	correct	column.	In	this	case	I	
want	to	use	the	left	TYPE	column,	which	contains	imperviousness,	and	not	the	right,	
with	comes	from	soil	types.	

Not	to	worry,	I	am	only	looking	at	an	alias.		If	I	open	the	Fields	view	on	the	table	
(right	click	on	any	
column	and	select	
Fields,	near	the	bottom	
of	the	drop	down),	I	see	
that	the	columns	have	
distinct	names,	TYPE	
and	TYPE_1.		The	Union	
command	creates	these	
distinct	Field	Names,	
and	assigns	aliases.		The	
Arcade	expression	
references	the	Field	
Names,	and	not	the	
aliases.	

ESPM5295	 Model	Builder,	Assignment	2

My	Model	will	now	look	something	like	this:	
	

Once	I	validate,	run,	and	verify	the	model,	I	can	now	calculate	a	new	maximum	
inCiltration	layer	after	any	modiCication	of	the	inputs.		In	this	case	I	could	change	the	
perviousness	to	convert	some	of	my	roads	or	sidewalks	to	pervious	pavement,	and	
change	a	building	to	have	a	green	roof,	and	then	re-run	my	model	fairly	simply.		This	
would	greatly	speed	iteration	through	my	mitigation	development.	

If	this	were	a	stand-alone	model,	I	would	probably	want	to	make	the	output	a	
parameter.		However,	the	goal	is	to	create	a	larger	model	that	incorporates	my	entire	
workClow.		

Once	I’ve	completed	this	“branch”	of	my	overall	model,	I’ll	have	two	of	my	three	main	
branches	codiCied	in	Model	Builder.		I	could	then	make	a	full	model	by	completing	
the	third	branch,	and	after	debugging,	combine	all	three	branches	with	an	“overlay”	
of	sorts	of	the	three	branch	layers,	either	through	conversion/raster	calculator	or	
vector	union/recode,	and	then	to	raster	or	vector	aggregation	functions.	

ESPM5295	 Model	Builder,	Assignment	2

Making	a	Model	Flexible	
You	might	notice	that	when	you	save	a	model,	the	Cile	references	are	set	to	the	input	
values	you	used	when	debugging,	e.g.,	if	an	input	Cile	was	in	the	C:\users\classdata	
directory,	with	the	name	“elev_rast.tif,”	then	that	will	be	included	in	the	model	
speciCication	when	you	save	it.	

If	you	want	to	use	the	model	on	different	data,	in	a	different	directory,	you	may	run	
in	to	problems,	because	the	model	will	look	for	exactly	these	data,	in	the	speciCied	
directory,	when	you	wish	to	run	it.	

One	option	is	to	specify	all	input	and	output	data	sets	as	parameters.		This	may	work	
in	some	instances,	but	in	others,	you	may	not	wish	to	have	to	specify	all	the	inputs.	
In	addition,	if	there	are	intermediate	data	sets,	you	don’t	want	to	have	to	specify	all	
of	them.	

A	common	approach	is	to	take	advantage	of	inline	substitution.	Any	time	you	enclose	
text	in	%	symbols,	the	model	will	substitute	a	workspace	variable	deCined	for	that	
text.		For	example,	in	the	Cigure	below,	my	base	data	are	stored	in	a	geodatabase	
named	Data.gdb.	I	deCine	a	workspace	data	location	with	the	name	Data	Workspace,	
and	a	value	of	C:\Data.gdb.		If	I	place	the	token	%Data	Workspace%	in	my	Model	
Builder	code,	it	will	substitute	
the	value,	C:\Data.gdb	when	
running	the	model.	In	this	way	I	
can	specify	a	different	path	and	
dataset	for	my	input.		Note	that	
the	data	sets	themselves	must	
have	the	same	names	as	
speciCied	in	the	model,	e.g.,	
Roads,	Projected,	in	the	
example	below.	I	could	make	
these	variables	that	one	enters	
when	running	the	model.	

Inline	substitution	is		often	used	
to	allow	for	working	on	different	computers,	where	the	paths	to	a	common	data	set	
may	be	different.		It	is	also	often	used	to	specify	the	scratch,	or	working	directory,	
where	intermediate	data	are	stored.		Inline	substitution	can	make	your	models	much	
more	Clexible.	

You	want	to	optimize	how	you	divide	inputs	between	parameters	and	inline	
substitution.		If	you	are	always	working	in	the	same	project/database,	on	the	same	
computer,	then	you	probably	don’t	want	to	make	these	locations	as	inline	
substitutes.	You’re	entering	the	same	things	with	each	run,	wasting	time.		

You	likely	want	to	use	inline	substitution	for	the	working	directories/paths,	but	not	
make	them	parameters,	if	you	switch	between	locations	often,	but	use	the	same	

ESPM5295	 Model	Builder,	Assignment	2

geodatabased	and	Ciles.	For	example,	if	you	work	is	split	mainly	in	the	Skok	35	lab	
and	a	home	or	ofCice	computer,	you’ll	likely	have	different	paths	to	your	data	and	
scratch	workspaces	on	the	two	different	computers,	but	use	the	same	geodatabase	
and	data	layer	names.	You	don’t	want	to	add	inline	substitution	variables	or	most	of	
the	input	feature	classes	as	parameters,	because	you’ll	have	to	enter	them	with	each	
run.		Rather,	you	would	use	inline	substitution,	and	edit	the	model	to	set	the	data	or	
workspace	variables	for	the	model	on	each	computer.		As	long	as	the	data	use	the	
same	naming	convention,	you	can	move	updated	data	back	and	forth.	Each	time	you	
switch	between	computers,	you	can	just	edit	the	model	once,	to	modify	the	variable	
for	your	data	workspace	and	your	scratch	workspace,	and	then	do	your	runs.	

If	you	are	changing	a	data	layer,	e.g.,	adding	pourpoints,	you	may	wish	to	make	that	a	
parameter,	and	probably	not	an	inline	substitution.		Only	those	values	which	you	
which	to	change	regularly	between	runs	should	be	parameters.	
A	couple	of	other	notes	on	inline	substitution:	
• You	should	add	inline	substitution	variables	after	you	have	written/debugged	

your	model,	at	least	while	learning.	The	Validate/Run	sometimes	trips	up	on	the	
inline	substitution	within	the	Model	Builder	Editor,	even	though	the	model	
works	in	a	model	run	from	a	toolbox.	You	get	odd	error	warnings,	so	while	you’re	
learning,	you	think	you’ve	done	something	wrong,	when	sometimes	you	haven’t.	

• Be	prepared	for	some	of	your	data	and	operations	to	be	greyed	out,	seemingly	
incomplete,	when	you	use	inline	substitution	values	as	parameters.	The	program	
doesn’t	know	what	they	are	until	run	time,	so	it	will	tell	you	that	inputs	are	
undeCined	or	incorrect,	for	example,	saying	a	data	set	doesn’t	exist	because	a	
data	workspace	(geodatabase)	is	a	variable,	deCined	at	run	time.		

• Some	tool	values	need	to	be	deCined	as	parameters	when	you	use	inline	
substitution	that	don’t	need	to	be	parameters	when	you	hard-wire	the	data	
source.	For	example,	a	pour	point	Cield	has	to	be	speciCied	when	snapping	
pourpoints.	If	you	build	your	model	and	indicate	a	Cixed	input	layer,	you	have	the	
opportunity	to	also	identify	the	column	used	for	identiCication.	If	you	have	the	
pourpoint	input	layer	deCined	as	part	of	an	inline	substitution,	Model	Builder	
doesn’t	know	what	values	might	be	available,	so	it	remains	undeCined.	You	have	
to	set	it	as	a	parameter	so	it	can	be	speciCied	at	run	time,	once	the	input	data	
layer	is	known.	

Below	is	a	model	that	contains	inline	substitution,	and	(perhaps	too)	many	
parameters	for	the	inputs	and	outputs.		I	Cirst	created	this	model	as	shown	earlier,	
without	any	inline	substitution,	veriCied	it	worked,	and	then	introduced	variables	for	
an	input	database	(DataGDB)	and	scratch	workspace	(ScratchGDB).		This	“broke”	
some	of	the	pieces,	and	so	I	had	to	modify	the	model	a	bit,	adding	the	pourpoint	Cield	
as	a	parameters.		This	model	assumes	we’ll	be	moving	our	main	data	between	
computers,	and	mostly	modifying	our	pourpoint	layer	in	this	branch,	as	we	add	new	
rain	gardens	for	our	project.	This	means	we’re	always	using	the	same	input	DEM,	so	
it	doesn’t	need	to	be	a	parameter,	and	that	I’ll	be	working	with	the	output	vector	
watershed	polygons,	so	I	don’t	need	to	specify	the	output	raster	watersheds	as	a	

ESPM5295	 Model	Builder,	Assignment	2

parameter.	Different	workClows	would	likely	have	different	mixes	of	parameters	and	
inline	substitution.	

If	I	right	click	and	open	the	Input	DEM	bubble,	I	see	the	following	Cigure:	

It	shows	that	we’re	accessing	our	study	area	DEM,	with	the	data	path	pre-pended.	
When	I	set	this	as	a	parameter	during	a	model	run,	it	will	substitute	the	path	into	the	
%DataGDB%	part.	

ESPM5295	 Model	Builder,	Assignment	2

If	I	hover	the	cursor	over	an	operation,	it	will	temporarily	display	the	input	
variables,	here	for	the	Flow	Direction	operation:	

You	can	see	that	the	inline	substitution	is	in	place	for	both	my	input	and	output	data	
layers.	

In	this	instance,	I	decided	I	don’t	want	to	save	my	snapped	pour	points	to	my	main	
data	geodatabase,	but	rather	to	the	scratch	geodatabase.		I	could	have	done	this	for	
any	of	the	intermediate	layers,	it	just	depends	on	what	I	want	to	save	where.		I	
speciCied	this	by	Opening	
and	typing	the	inline	
variable,	%ScratchGDB%
\SnapPP	when	
specifying	the	output,	
and	it	recorded	that	into	
the	model.	Hovering	over	
the	SnapPP	bubble	
shows	this:	

Once	I’ve	speciCied	the	
inline	and	parameter	
variables,	I	save	the	
model,	and	then	run	it	
from	the	Catalog	
Toolbox.	

ESPM5295	 Model	Builder,	Assignment	2

Your	assignment:	
Create	2	models	(of	both	branches	in	the	same	model),	that	calculate		
1. the	pervious/building/soil	combination	branch	described	above,	appropriate	to	

your	workClow,	and,	
2. the	creation	of	a	net	rainfall	layer.	This	second	model	will	be	a	bit	more	

complicated,	in	that	I	want	you	to	start	with	the	input	POINTS	for	your	new	
canopy	as	one	of	the	layers,	as	a	parameter,	along	with	your	existing	canopy,	
buildings	layer,	and	gross	rainfall	layer	(2.5	or	5	cm)	as	inputs.	Your	model	needs	
to		

• buffer	the	points	(perhaps	based	on	canopy	type),		
• then	union	the	new	canopy	with	the	existing	canopy	
• then	erase	out	the	current	buildings	and	current	canopy	from	your	

buffered	new	canopy	(to	create	a	new	layer	that	allows	you	to	
calculate	cost	of	the	new	canopy	area	only)		

• assign	rainfall	interception	to	the	expanded	canopy	layer,		
• calculate	net	rainfall	from	the	gross	rainfall	plus	canopy	interception.	

Turn	in	pdfs	of	the	model	builder	graphic,	and	the	models	themselves,	in	to	the	
Canvas	site.

