Map Algebra
Kernals
Cost Surface
Friction Surface

There will be questions about these on the test
Simple Operations

\[
\begin{array}{cc}
1 & 1 \\
1 & 1 \\
\hline
\end{array}\]
\[+\]
\[
\begin{array}{cc}
3 & 4 \\
5 & 6 \\
\hline
\end{array}\]
\[=\]
\[
\begin{array}{cc}
? & ? \\
? & ? \\
\hline
\end{array}\]

\[
\begin{array}{cc}
2 & 3 \\
4 & 2 \\
\hline
\end{array}\]
\[*\]
\[
\begin{array}{cc}
3 & 4 \\
5 & 6 \\
\hline
\end{array}\]
\[=\]
\[
\begin{array}{cc}
? & ? \\
? & ? \\
\hline
\end{array}\]
<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td></td>
<td></td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td>20</td>
<td>12</td>
</tr>
</tbody>
</table>

* = 20 12
High Pass

Mean

Input matrix:

Output matrix:

Kernel:

Output matrix:
\[
\frac{(1 \times 2) + (1 \times 2) + (1 \times 3)}{9} = \frac{6}{9} = 0.666
\]

\[
\frac{(1 \times 2) + (1 \times 3) + (1 \times 3)}{9} = \frac{6}{9} = 0.666
\]

\[
\frac{(1 \times 2) + (1 \times 4) + (1 \times 3)}{9} = \frac{24}{9} = 2.66
\]
Spatial Covariance:
Consider the effect of adjacent cells
The Pythagorean Theorem

The square of the length of the hypotenuse of a right triangle is equal to the sum of the squares of the legs.

\[a^2 + b^2 = c^2 \quad \text{or} \quad c = \sqrt{(a^2 + b^2)} \]
Create a Cost Surface from R1C1
Use formula Distance x factor

Distance x 3

<table>
<thead>
<tr>
<th></th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>C5</th>
<th>C6</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>R2</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>R3</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>R4</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>R5</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>9</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>R6</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>R7</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>R8</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>R9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>R10</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>

cell size is 10

Formula
\[\sqrt{(a^2 + b^2)} \times 3 \]

From Lecture Notes/Readings

Distance = \sqrt{(x'^2 + y'^2)}

Cost = Distance \times \text{fixed cost factor}

Figure 11-13: A cost surface based on a fixed cost per unit distance. Minimum distance from a set of source cells is multiplied by a fixed cost factor to yield a cost surface.
Create a Cost Surface from R1C1
Use formula Distance × factor

Distance × 3

<table>
<thead>
<tr>
<th></th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>C5</th>
<th>C6</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>R2</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>R3</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>R4</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>R5</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>9</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>R6</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>R7</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>R8</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>R9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>R10</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>

Cell size is 10

Formula
\[
\sqrt{(a^2 + b^2)} \times 3
\]

From R1C1 to R2C2
\[
\sqrt{10^2 + 10^2} \times 3
\]

14.1 × 3 = 42.4
Use a Friction Surface to create travel costs from R1C1

Use formula cell distance x friction
Use a Friction Surface to create travel costs from R1C1

Cell by cell distance * friction