ESPM 4295 - GIS in Environmental Science and Management

This page organizes all the main course information and is used to distribute assignments and data sets. Throughout these pages, links are underlined.

Mandatory class participation days (in person or on zoom) are noted at the start of each week. 

Class materials are organized sequentially in accordion drop-downs, first activities, then deadlines, and finally resource

Canvas site for ESPM4295 - Used to turn in assignments, track grades

- Paul can be reached at [email protected], or 612 889-9136, or Paul's Zoom Link 

-  Andy Jenks can be reached at [email protected]  or 651-387-9600, or  Andy Jenks' Zoom Link

Each week is a set of three "accordions," which will expand when you click on the plus sign on the right. The assignments are described in the first, due dates in the second, and resources for the week in the third accordion. Use this information to complete each week's tasks.

Note that if you click on a link in one of the accordions it will sometimes open the link in this same tab, and sometimes it will open a new tab. It depends on how your browser is configured.  If you click the back button to this page, you may find the accordion closed, losing your place.  To avoid this, in Chrome, and many other browsers, you may right click on a link, and it will give you a choice to open the link in a new tab. A command-click or control-click will often do the same thing. If you find yourself doing this a lot and tire of it, then you may wish to search how to configure your browser to by default open in a new tab.

Schedule and Content

Expand all

Week 1 Assignment - Project Introduction, Software Setup, Course Mechanics

Mandatory Class Meeting on Wednesday

Week 1 - Introduction, Course Mechanics, ArcGIS Set Up and Use
Our primary goals this week are to cover course mechanics, for you to set up and verify ArcGIS Pro and class data access from home, refresh basic ArcGIS use and digitizing, and introduce our semester-long problem spatial analysis project. Whew.

This course is split into two periods. We develop skills during the first six or so weeks, focusing primarily on two practice areas in the northern part of the St Paul Campus. The remainder of the semester focuses on analysis for two project watersheds for an expanded area (map here).

ArcGIS Software Access

Most of us will use ArcGIS Pro via the web, with an app that gives access to a virtual computer. We will use a software called Citrix Workspace, AppsToGo (or appstogo) for this. Installation instructions are provided in the X295 Software Setup document, linked in the resources column, and the To Do section below.

You will have several drives on the virtual machines (VM) that you will access via Citrix/appstogo, including a cloud-resident C:, S: and W: drive, and a CFANS L: drive.  A few things to keep in mind:

1) we will be distributing base data from the S: drive. The same source data will be duplicated on the L: drive. We'll call the S our data drive. It has an ESPM5259 directory that will contain base data, and a ESPM5295share directory, to which you may save your data, into a sub-directory with your name. We include an L: drive for redundancy. This is the first year we've used a cloud-based drive to disseminate data, and past experience has taught us to expect unforseen problems. 

2) There will be VM W:  drive, which will persist between sessions for the duration of the semester. You should view these as a backup storage location where you keep your work between sessions.

3) Each instance of a virtual machine (VM) has a C: drive.  You will want to copy your working data there at the start of a session, and copy any results or changed data from there back to your W: or V: drive at the end of each session.  YOU ALWAYS WANT TO WORK ON THE VM C:\DESKTOP, the other drives are too slow or risk crashing and loss of data when used with ArcGIS.

Do not leave anything on the VM C: drive that you want to keep, as it disappears into the ether when you sign out of your VM session. Data you store on your VM H: or W:  drive will persist between sessions. However, analysis will be fastest on the VM C: drive, then next fastest on the VM H: or W: drive. You will also have various local computer drives, and a CFANS L: drive, but you DO NOT WANT TO WORK FROM YOUR LOCAL OR CLOUD H: or W: DRIVES OR THE L: Drive.  That means copy your data first to the VM drives (the C: while working in Arc), and the H: or W: for data you've worked on, and want to save between sessions.

Although Citrix will be the best method of ArcGIS access for most students, as an addition, or an alternative, you may also download/install ArcGIS on your own computer if it meets the technical requirements, and access the data either through a VM and download, or a VPN to a CFANS drive.  Since this will apply to a small number of students, you can inquire with us if you believe this is best for you. 

One final word about ArcGIS using a VM through Citrix. A wired connection is often many times faster and more reliable than a WiFi connection to your router.  If you have a clear path from your internet router to your computer, and your computer has an ethernet port, buy a CAT-5 or CAT-6 ethernet cable and connect directly to your router. If your computer does not have an ethernet port, consider purchasing a USB to ethernet plug (about $25), and using it with an ethernet cable. If you cannot connect with a wire, then avoid shared WiFi as much as possible, by using a separate node, or working during hours where there isn't much traffic/use. 

 

To do this week:

A) Scan the Semester Project Description linked here, to get an idea of what we're heading for over the next 15 weeks, and look at the Rainfall Mitigation description and the Minnesota Pollution Control Agency guidelines, and this Minute Earth video on the coming "poopocalypse" for additional motivating information.

B) Set up access to ArcGIS Pro via a virtual machine/web browser, OR install ArcGIS Pro on a home machine, using the instructions found in the link to the X295 Software Setup, in the resources column at right. 

C) Create a practice geodatabase in NAD83(CORS96/2011) UTM Zone 15 coordinates.  Refer to the materials in the resources column, far right, if you need a refresher in getting started in ArcGIS Pro. If after viewing you still have questions, talk to Paul and Andy. We'll expect you to be able to create geodatabase layers and digitize into them quickly and easily for subsequent exercises. 

Start ArcGIS Pro and create a feature data set and two feature classes in your new geodatabase,  a polygon feature class for a trees practice area, and a polygon feature class for a landcover practice area. You must digitize your own layers.

Second, copy the NorthCampus_leafoff2017.tif image, found in the repository directory L: drive, under the 4295\CampusImages directory, or on to your working directory. It is large, so it will give you an early indication of how your local internet speed will serve you for the rest of the semester, and whether you should plan on working more in the lab.  This will also require you set up a VPN and map the network drive to access the L: drive, as described in the X295 Software Setup document, in part B, above.  You will also find copies on the other cloud repositories, but you should transfer a copy to your personal cloud drive (H:) or other persistent storage space you use (e.g., a Google drive). You should figure this out this week because you will have to use this mapping in most weeks. If you can't map or understand the network drives after you've read the instructions carefully and tried a few times, contact Andy Jenks or I to troubleshoot and solve the problem. 

Third,  digitize the boundaries on the St. Paul Campus into the geodatabase you created above, creating:

a) a Trees Practice Area outline into a polygon feature class, as shown on the practice map (practice map here), in the first couple of lines of this description, and

b) The larger Landcover Practice Area boundary, a polygon feature class, shown on the practice map linked above.

You'll only be digitizing the boundaries now.  You'll digitize the trees, landcover, and buildings in future assignments.

D) Create a map with an image background, your two digitized layers, your name, a title, scale bar, and north arrow, and export as a pdf. Use the naming/file saving conventions described in the Deadlines section for this week. Remember, you can get an image background for your output from the ArcGIS standard backgrounds, or from the class images, described in the Resources column for this week, but you must digitize from the NorthCampus_leafoff2017 image.

One final note for this week, in this and all assignments and conduct, you're expected to understand and follow the Student Code of Conduct and Academic Integrity. Read it and let the instructors know if you don't understand any parts.

Week 1 Deadlines

Turn in assignments on the Course Canvas Site, unless specified otherwise. Some activities are due the same week as assigned, but typically they are due the week after their assignment.

Prior to class Next (Week 2) Wednesday, before 10:40 a.m. :

  • Learn how to start an ArcGIS virtual machine through a browser (much preferred), or install an at-home copy, for ArcGIS Pro
  • Create and turn in a pdf map of the digitized features described in the assignment, plus an image background, name, title, scalebar, north arrow, and legend.

Next Wednesday before class is a hard deadline, you should turn in what you have completed by then. This class moves at a fast pace, and you can't be neglecting new work.  Once the deadline has passed, you will receive a 30% deduction from your graded score, and after two weeks, zero points. Unless noted otherwise, this will be our policy for assignments. If you're traveling out of town for another commitment, pre-clear tardy submissions.

Rules when turning things in:

  • Submit maps as pdfs
  • Submit data as geodatabases (GDB extension), compressed in  .zip or Mac archive formats.  Use naming convention described below.
  • Submit only the first report draft as a MS Word file or Apple Pages file. If you wish to use another format, please contact the instructor.
  • For the second through final report drafts you'll be creating your project report in ArcGIS Online Story Maps. You will submit a pdf exported from your Story Map to Canvas. This pdf export from Story Map sometimes garbles figures/text. Don't worry about it, just turn in the pdf as is.
  • Include your initials at the start of your files, and a W# where # is the week at the end of the filename.  For example, I might name my map "pvb_practicemap_W1.pdf", my geodatabase "pvb_practice_data_W1.gdb" and my zip file "pvb_practice_W1.zip".

Failure to follow this naming convention for compressed and component files may result in a deduction, and/or a return to you for re-submission. The naming and week identifiers greatly help me organize submissions and grading.

When you turn in geodatabases,  they should not contain copies of layers or extraneous intermediate layers, and the submitted layers should have descriptive names. If it isn't clear to me, I'll ask you to resubmit, and late deductions will apply.

When you turn in vector data layers, make sure you don't have extraneous columns in the tables.  The data may come with "extra" columns, or you may be generating intermediate columns through processing. Keep only those needed for the primary purpose of your data.

Week 1 Resources - slides, videos for Zip/Unzip, Videos for Software Setup, ArcGIS Refresher

Introductory Slides, day one slidesvideo

Semester Project "Big Picture" Overview Slides (refer to this throughout the semester), project overview pdf,  video

You'll need ArcGIS Pro software access, follow these instructions: X295 Software Setup

This video Andy created for our introductory GIS course may help 

You be helped by this video on accessing ArcGIS through the Citrix Workspace software 

You must compress your geodatabases before turning them in, here's a video on file compression:
How to Zip/Unzip

Review materials from FRNM3131 (note, data referred to below are in the 3131 course files, but you shouldn't need them for understanding the mechanics):

ArcGIS Pro Refresher295

  • Review this Video, if need be, for starting ArcGIS Pro, creating a new project
  • Here is a pdf excerpt from an intro course lab on creating a Geodatabase, and importing data into it - it is some pretty detailed text, may take a bit to wade through, but it may be a good reference if you've forgotten or didn't learn the startup process
  • Review video here on creating a geodatabase
  • Review video on creating a feature dataset
  • Review video here on digitizing polygons
  • Accessing the MNGeo WMS server in ArcGIS Pro, to specify an image background

 

There is a Personal Zoom Room for Paul and Personal Zoom Room for Andy

Email us if you wish to meet outside of class hours and we'll arrange a time to meet in this room.

Week 2 - Assignments-Digitizing Review, Start Report

Week 2 - Digitize trees and write the introduction of your final report

Mandatory meeting on Monday

Task 1 - Digitize the tree canopy for the Trees practice area

Look in the S: drive or the L: drive, 4295W\Data folder, for the geodatabase named "PracticeAreas.gdb."  Copy this gdb to your virtual computer desktop (Citrix CFANS Cloud virtual machine). Among the data layers in the gdb is a polyogn "Trees_Dig_Area". You'll be using this as a boundary for digitizing this week. It corresponds to one of the areas you digitized last week, but we provide it here so that we all start on the same page. 

Your goal is to digitize each tree's canopy outline based on the images. You only have to digitize trees within the boundary defined by the layer Trees_Dig_Area in the PracticeAreas geodatabase.

There is another bounding polygon for the buildings, you will use that next week to digitize within the buildings area polygon.

Download the "NorthCampus_leafoff2017" and "NorthCampus_leafon2017"  photos to your "local" drive. These source files are on the class S: drive and the L drive, ESPM4295W directory, in the CampusImages folder. Note that there are other years' images for larger areas, you may access these also. 

Manually interpret individual tree crowns based on the various leaf-on and leaf-off images. It is best to use the 2017 images as a base, but you may use others for some areas. You can use leaf-off images to somewhat identify the crowns and to separate evergreen from deciduous trees, but leaf-on images provide the best source for crown edges.

You should do your best job of interpreting the individual trees, even where they grow in clumps. Do not be too meticulous in digitizing tree crowns. Something like 8 to 12 vertices should be acceptable for most crowns. Use autocomplete digitizing or split polygon digitizing on clumps (see resources at right). Remember that individual crowns cannot overlap with other crowns, you must have "planar" topology within this layer.

Also note that the tree crowns can overlap with buildings for this initial data set, but later we will remove the overlap. We will use the Erase function later to remove the overlapping tree portions. 

You should create a text attribute named something like TreeType with the values "conifer" or "deciduous" assigned as appropriate for each polygon. You can interpret deciduous/conifer from inspecting the leaf-off and leaf-on images

Task 2 - Begin your semester-long report by writing a polished draft of the introduction. You should write this draft in MSWord or Apple Pages, or a software that can save to one of those formats. Turn track changes on so that I can see evidence of your editing. This draft should be the equivalent of two to five pages at 1.5 line spacing, not counting figures. It should describe:

  • the problem you're addressing,  
  • why we're interested in doing this, 
  • a description and map/figure of the study area (remember, the two large watersheds, NOT the practice areas), and
  • the general approach you'll be using. 

Look at the information on rainwater and runoff provided in the first week and the project description for information.  Also look at the example reports in this week's resources columns for good examples of details, depth, and voice in report introductions. 

Your writing should describe work over the entire, two watershed analysis areas of the semester project (map here), and not just your practice areas.  We want to build the report in pieces over the course of the semester. If your graphics and text refer to the practice areas as your study area, you'll cause yourself more work, in that you'll have to re-write sections and create new figures for your final report. You can include graphic examples from the Trees and Landcover practice/skills areas you're digitizing, but be strategic so that you don't show the practice area boundaries in the figures. You should be clear to describe images of the digitized tree, building, or landcover layers as examples from a sub-area of your overall study area.

You should write mostly in the present tense when describing general problems or conditions (e.g., "managing rainfall runoff is one of the most common and expensive problems in developed areas,"  and the past tense when you're describing the data development and analysis of your project (e.g., "we used several images as data sources..."). Although the parts of the introduction describing your data and analysis will be vague at this point, because you haven't developed them, there is enough in the project description to provide a general outline of your data and approach. Write in the past tense as if you've already completed your data development and analysis, even though you haven't started yet. You'll slowly build the report, an assignment at a time, so you'll revise the introduction and add methods, results, and recommendations in later labs, writing in the past tense now saves you work later. 

I'll expect you will have gone through the write-read-revise cycle several times for this first draft, to make sure it is clear, concise, complete, well organized, and grammatically and factually correct. Read the materials in this week's resources column on general writing guidelines.  You must turn in two drafts: First, an initial draft that is fairly complete, and a second draft, with track changes on, in which you've tried to improve on clarity, grammar, spelling, and formatting. You must have track changes turned on between drafts.

Report guidelines are summarized here.

If there is a tradeoff between finishing the digitizing, and skimping on the report introduction, polish the introduction first.

Week 2 - Deadlines

By next Monday, before the start of class, turn in: 

  1. A pdf map of the tree crowns, colored by TreeType, with an image background, and your trees practice area boundary, and the usual map elements (title, name, legend, scalebar, etc.). It is o.k. on this map if your trees overlap with buildings.
  2. A compressed (zipped or archived) geodatabase containing your trees layer.
  3. Two versions of a draft introduction for your report, an initial version, and a revised version, with track changes on. Remember to follow the report guidelines, link embedded in the assignments section for this week, you'll be marked down if you don't follow these guidelines.

 

Week 2 - Resources, Videos on Digitizing Mechanics, Tools, and Example Reports

Week 2 Slides on digitizing,  writing examples, REPORT GUIDELINES

Video here on using the course data - Do not access the course L: or S: or W; drive from within ArcGIS. ALWAYS copy data to the virtual computer (desktop is easiest) and then work with the data on the virtual machine local drive. Then copy any new or changed data back to your directory back to the W:, , S:, or L: drive, or to your own computer, or a USB drive or other "permanent" storage. If you load directly from the L drive into ArcGIS, you will likely lose data, time, and work.

A video here on managing files/projects/directories in the virtual machine C:  and cloud drives (W:) we're using in this calss

Editing, see the intro videos provided in Week 1 on creating a geodatabase and digitizing points and polygons, and these below, excerpted and modified from FNRM3131 for more efficient digitizing:

Additional information for your report: 

Additional tools that might be useful for your report:

Examples of professionally written reports - good examples of proper tone, grammer, and level of detail:

1: Browns Creek
2: NPS Pollinator Survey
3: NPS Kettle Ponds
4: Dall Sheep Survey
5: Grand Sable Netting
 

You should create a study area figure in your draft introduction, using the full watershed outlines in the Practice Areas Geodatabase provided in the L: drive, in the Data subdirectory.

Week 3 - Assignment, Topology, Project Geodatabases

Monday Mandatory
Wednesday Optional attendance

Week 3 - Create/activate ArcGIS Online account, Create Project Geodatabase, Digitize, Topologize

Create ArcGIS Online Account.  You will write your project report as a Story Map in ArcGIS Online. This is a web-based tool for combining text, images, and maps. Yours can be relatively simple, with mostly text and images, and only one required interactive map, although you may add "bells and whistles" later on if you wish.

Your only task this week is to create an ArcGIS Online Account (if you don't already have one) under the UMN ArcGIS license. Most ArcGIS Online and Story Map tools require a paid account, but you all get a free account through the UMN site license. Create an account using your UMN email and X500  (see docs in Resources, rightmost column).  Email me when you have created your account.  I will create a group for each student, with Andy and I as co-members, so that we may review and edit your Story Maps. 

All future writing will be completed within a story map, although you will also export a pdf from your story map so that I may know you're done for each step, and I can grade, edit, and offer suggestions for improvement.  For now just create your account.

Create a Geodatabase with topology for the north campus practice area, containing the layers listed below. Review topology editing/digitizing in ArcGIS pro as needed (videos on right). 

Import the LandBuild_Dig_Area from the Practice_Areas geodatabase you used last week, into your new geodatabase.

Your geodatabase should have a feature data set that includes:
1) A "Landcover" polygon layer recording surface cover, with a text column named "material" for the surface type that contains two categories, either 1) impervious (e.g., roads, sidewalks, parking lots, paved plazas) or 2) pervious (grass, flower beds, non-compacted dirt, forested areas, shrubs). 

2) A "Buildings" polygon layer to hold all building footprints for the landcover practice area, with an attribute for the name (text), and roof type (with flat or pitched values).

3) A "Tree Canopy" data layer, imported from last week's digitizing.  Import those data into your geodatabase if you digitized them as a shapefile, or from last week's geodatabase.

4) The LandBuild_Dig_Area layer encompassing your landcover/building "practice" study area - this is imported from the Practice_Areas gdb.

5) Layer topology, with, topological restrictions as:

  • Land Cover and Buildings must not overlap,
  • Land Cover polygons must not have gaps (except the holes created by Buildings) 
  • Trees and buildings must not overlap - remove the tree canopy where it overlaps buildings
  • All layers must be contained within your Study Area Boundary

Start Digitizing Landcover in the "Landcover/Buildings" Practice Area. Digitize landcover for at least 50% of your practice area, and all buildings for that same 50% area, and test the topology rules. Use primarily the 2017 images, but use other images as needed (e.g., WMS images, other years' campus images, as available)  to locate building edges as best you can.

Week 3 - Deadlines

By next Monday before the start of class:

1) Respond to the Canvas prompt AND send me an email when you've created your arcgis online account (to [email protected])

2) Submit to Canvas your geodatabase with your digitized trees layer, the empty landcover and building layers listed in the assignments column, and completely specified topology rules.

Remember to use our standard naming convention (initials on the front, week on the back of the name), and zip up your data into an archive.

3) You should also turn in a pdf map that shows at least 50% your landcover and 50% of your buildings digitized, with the usual map elements.

As noted above, you should create maps in a form that will be easily integrated into your written report. Think about the size and shape of the map when used as a figure, and font sizes, symbology, and the arrangement of map elements that will be readable when scaled to a page. Generally, you want fonts that are no smaller than 10 points in the figures, so if you resize the image, you need to take this into account. The most common mistake is shrinking an image to fit on a page and thereby reducing fonts to a 4 or 5 point size, which renders them useless.

You will export pdfs to turn in to Canvas, but you should also export images (e.g., .jpeg) to use in your story map.

Week 3 - Resources, ArcGIS Online Accounts, ArcGIS Catalog and Managing Geodatabases, Project and Folder Organization, Cleaning Topology

Week 3 Slides, Creating an ArcGIS online account, catalog management, digitizing and topology 

Instructions here on creating/activating an ArcGIS Online account.

Videos on general folder and project data management:

 

Below are  videos on topology to help with the actual mechanics of creating topology and fixing topological errors in ArcGIS: 

-Create topology, 
-Fixing topological errors 

Your rules specify that the buildings layer must not overlap with trees. You can enforce this with the Erase tool, by first digitizing all the buildings, then erasing the trees with the building footprints. 

 You need to create a landcover layer that has no gaps or overlaps with the buildings layer. The easiest way to do this is to digitize the landcover, extending all polygons into the buildings. Then use the Erase command to punch out the buildings from the landcover, with a matched edge.

See this video and read the documentation on the Erase tool.

Week 4 - Assignment, Finishing Practice Area Digitizing, Write First Report Draft, Workflows

Monday, Wednesday, optional attendance
Week 4
- Finish D
igitizing, Cleaning, and Adding Attributes To Your Geodatabase;  
- Start Methods Section of Your Report
- Create a story map, transfer your introduction text and figures into the story map, and write the methods section directly into your story map.

Complete buildings and landcover  - finish digitizing the landcover and building layers for the test areas.

Complete cleaning the topology for the practice areas, verify and fix topology for landcover/buildings, keeping the data logically consistent across layers, and complete the building roof type and landcover type and maximum infiltration attributes. Your data should be topologically "clean," with all "real" errors fixed, before you turn it in, but if it isn't, turn in progress by the deadline. 

Create a map showing your landcover data layer, and display the "clean" topology, after checking for and fixing any topological errors. Be sure to include the topology and participating data layers in your PDF map, and that only the "faux" errors appear in your topology.

Create a map of your canopy and buildings for the "landcover" practice area, with an image background. The canopy should be colored by type (conifers one color, deciduous trees another), and buildings should be colored by roof type (flat roofs one color, pitched roofs another). 

Note that the canopy may not overlap buildings, so you should use the ArcGIS Erase tool or other methods to remove any parts of trees that overlap buildings. Color your trees and building layers with semi-transparent fills so that it is apparent they don't overlap.

Start on the Methods section for your final report, describing data creation.  This should describe your digitizing/topology creation, with a be written directly into Story Map, and the equivalent of at least two pages of text. You should include several descriptive figures. You should also include another up to two pages on the analysis you will be doing (but write in the past tense, as if you've already done it). You should have a fairly concrete, clear description of the data development you've completed or nearly completed (the vector layers and topology).  Your description of the data as yet to be completed (e.g., soils) and your analysis workflow will be somewhat vague, but it should be clear that you've read the project analysis requirements, and have thought about the steps you need to take to reach your end goal. You will improve the methods section in future drafts.

DO NOT reference specific ArcGIS tools in your description. This is too much detail. Describing important parameters, e.g., that you used a snapping tolerance of one meter or listing and describing a set of planar topology rules is fine. You should not write at the level of detail that "I used the ArcGIS editor merge tool to merge polygons and opened the table editor to add columns." You typically write that you used a software (ArcGIS Pro version 2.x) for your project, and and more generically describe the methods and steps.  Note the example reports in the Week 2 Resources column, for an appropriate level of detail.

You'll be writing this in an ArcGIS Online Story Map, and you'll copy or retype the introduction from the last assignment into this assignment, so your story map contains both the introduction and methods. The introduction should be edited based on feedback received. The expected page lengths we give above aren't exact, because there aren't any standard pages in a story map. The page estimates assume a line spacing of 1.5, with about 375 words per page, so it should be about 750 to 2250 words total.  You should add four or five maps as images for the methods section, exported from ArcGIS Pro, e.g., the basic study area and boundary, annotated, somewhere near the start.  You may/should add other figures to help describe the general problem. 

Your additional figures should include digitized layers you've developed, one for the landcover, one combining buildings and canopy, one for watersheds and flowlines, and one for topology. You may use the maps you've already produced for previous assignments, as appropriate, but your methods section should describe these as examples; don't refer to your practice area as the entire study area, otherwise, you will have to rewrite these sections or redo these figures later (remember, we'll be doing an analysis for a larger, two-watershed study area as the focus of our report, and to save time you are able to use the graphics you create now in that final report, rather than having to redo these images for the entire study area).

Note there is a second part of the methods required here, the analysis part you've yet to start  I want you to think about how you'll do this, and write the equivalent of at least two pages, and hopefully more, of your initial thoughts. In order to write this section, you will have to refer back to the project description provided in the first week, and the data development activities over the next two weeks so that you can describe the overall project methods.

You need to include a general description of the analysis, how you will put together the data to reach your goals. This will be perhaps a bit difficult now, in that you may not know what process you will follow, but you have to include some description of your overall analysis to arrive at an answer, even if it is in the broadest of language and not described in great detail. The point is to get you to review the project goals now, and to think about how you will process data to reach them.  Re-read the project description and review the lecture description of our analysis model, and include a written and/or graphic description of your general approach and general processing steps for your analysis.

Week 4 - Deadlines

Next Monday, before the start of class turn in:

  1. Your completed geodatabase, that includes buildings, tree canopy, landcover, and topology. Do not include the images in the geodatabase, and remember to zip it or create a Mac archive before submission.
  2.  A pdf map with landcover and your clean topology, with all errors fixed. Include the topology in the legend and on the map.
  1.  A PDF map of the tree canopy and buildings.

Observe the usual map requirements.

You should also start on the methods section of your report, and start your ArcGIS online Story Map.  This second draft, as a story map, is due in two weeks (Monday of week 6). 

Week 4 - Resources, Introduction to Workflows, Data Development and Analysis, Flowcharting with Draw.io

Methods, Data Development & Analysis Overview slides.

Short lecture on Workflow, to help with writing methods section, and a brief description of a "big picture" flowchart

Using Draw.io to create a flowchart

Week 5 - Assignment: Watersheds, Story Maps

Monday Mandatory, in-person 
Wednesday Optional attendance

Week 5 - Complete 2nd Report Draft, Create Watersheds, Flowlines

2nd report draft:

  • Edit/improve your introduction according to feedback you received on your last draft, and 
  • Finish your draft of the Methods section for your report. Your methods section should include a description of your data development methods, and a broad, generalized description, including a flowchart, of how you are going to do your analysis. You don't need too many details in this broad description, but I want you to start thinking about this now, so that you can quickly begin work when we start the analysis.

As noted above, you will be doing this report as ArcGIS online Story Map. To turn in your work, we will use two venues.  First, I will have created a group with myself, Andy, and each of you in the group. You should share the Storyline map to the group.

Second, you should export a pdf from your story map, and submit it to Canvas.

Create watersheds and Flowlines
Your goal is to create watersheds for our study area, and flowpaths
, the surface paths along which water is expected to flow based on topography. Your watershed boundaries should look approximately like the map linked here. Pourpoints and a DEM are in the "Sheds" geodatabase in the class L drive, in the Data directory.  Retrieve this, and calculate the watersheds with the two vector pourpoints as outlets, using the provided DEM. The DEM and pourpoints are in the Sheds.gdb geodatabase in the Data directory on the class L drive. Note that the watersheds go outside the bounds of the previous PracticeAreas polygon, do not clip your results to the LandBuild_Dig or Trees_Dig areas, we're transitioning to a larger area. Your output will be vector polygons of the watersheds, and vector flowlines from the flow accumulation layer, with somewhere between a 75 and 300 sq-m threshold. 

We provide a figure of the approximate flowchart here. Note that important steps and branches are missing, but you may use this as a starting point.

YOU DON'T NEED TO DO THE DEM FILL STEP WHILE CALCULATING WATERSHEDS in this exercise, the DEM has already been conditioned for you.

Creating watersheds was covered in FNRM3131/5131, but many of you will not have taken that course, or it has been a while, so we provide links to instructions. See the videos and pdfs in this week's resources section, to the far right.

The watershed tool sometimes returns incomplete watersheds. The D8 algorithm only allows water to drain to one of eight directions, and in nearly flat terrain you can get divergent flow where you shouldn't. Sometimes this results in a cell near your flow channel with a slightly off direction, creating a second watershed upstream that doesn't drain into your pourpoint. 

Your watersheds should approximately match that of the map shown linked a few paragraphs up. If not, perhaps use a different pourpoint distance, or manually move the pourpoints to be closer to the initial flowlines.

The flowpaths (also called flowlines) might not intersect the provided pourpoints, but only run near.  You should use the SNAP POURPOINT function, with a snap distance of less than 5 meters, for this exercise.  

Create a pdf map of your watersheds, with a suitable image background, flowlines, and the usual legend, north arrow, etc.  Your watersheds should have an extent similar to those in the figure here.

Create a detailed flowchart that describes your specific watershed workflow. This flowchart should include each step, the names of the specific ArcGIS tools you used, and the descriptive names of the output layers.  Any key parameters should also be noted on the flowchart (e.g., snap pour point distance). Export as a pdf, and turn in on Canvas.

Week 5 - Deadlines

Next Monday, before the start of class turn in:

  1. A pdf map of watersheds, with flowlines,
  2. A flowchart of your process, (see note on creation and the drawio tool, near the bottom of the rightmost column) and,
  3. Your report 2nd draft, as a shared story map, and an exported pdf submitted to Canvas.

Important! As noted in the more detailed materials provided earlier, DO NOT write your methods as an overtly sequential description, and DO NOT frequently refer to specific ArcGIS Pro tools. As in the example reports provided in the Week 2 resources column,  professional reports rarely include this level of detail or form in their methods

Week 5 - Resources: Watershed Creation, 2nd Draft Details, Basics of Creating and Editing Story Maps

Watershed Slides

Most of you should have had exposure to the concept of watershed delineation based on a raster DEM.  Here is an excerpt from the "GIS Fundamentals" textbook explaining the general idea, for review: Watershed Background

Below are a video and instructions excerpted from FNRM3131/5131.  The students in that class are provided a "well-behaved" DEM, that has been pre-processed to work. You'll need to substitute your different input files and other parameters, but these provide an example of the workflow in ArcGIS Pro.

Creating watershed instructions, excerpted from 3131/5131, here using the tools:

  • Flow direction
  • Flow accumulation
  • Snap pour points (snap distance less than 5 m)
  • Watersheds

You DON'T NEED TO USE the FILL function on your DEM, included in some of the descriptive materials. The DEM has already been filled for you.  

Video for Watershed Creation

Video for creating vector flowlines from flow accumulation layer. This may require use of the tools

  • Raster Reclassify
  • Raster to polylines

You'll need to make a flowchart of your watershed processing workflow, you may create it in MSWord or other word processing software, powerpoint, any drawing package, or the flowchart package  drawio, which should be on the CFANS computers in Skok Hall, and our VM template.  Here is a video on drawio:

Using Draw.io to create a flowchart

Report 2nd Draft
Slides from lecture

Report guidelines here

A very short video on toggling reviewers in MSWord to better see the edits and comments I made on your first draft, which you will incorporate into your second draft. 

ArcGIS online Story Map resources:

Basics of Creating Story Maps
Logging in to UMN Story Maps
Briefest intro to Story Maps
Exporting a JPG image for your Story Map
Generating a PDF of your Story Map to turn in
Sharing your story map to a group

Getting started (ESRI)
The rest of the Story Maps getting started series, more there than you need, choose the parts that are helpful (ESRI)

Story Map Resources for Students (UMN)

Example Story Maps (more complicated than yours need be, but to give you ideas)
Hydrology of contrasting catchments
Flood impact analysis 
FEMA flood risks
Calgary River flooding

Again, resources for creating images to embed in your story map, repeat from week 1:

  • MS Windows Snip image from screen for figures 
  • ArcGIS Pro Export image from data frame for figures

Week 6 - Assignments

Monday Mandatory, in-person if at all possible, otherwise, Zoom Meeting Room
Wednesday, Optional attendance



Week 6 -   Work Flows and Model Builder
Introduction to Model Builder
This week we'll also redo the watershed delineation exercise, but this time to more explicitly demonstrate the use of Model Builder, a tool for codifying workflows. Model builder perhaps isn't worth the bother for small spatial problems you'll be doing only once, but is useful for complex spatial workflows, and for simpler or complex workflows you'll be repeating with different data sets or parameters.

Look at the example video, the Model Builder Quick Tour, Getting Started, and other resources from ESRI, linked in the right column.

Start a new project, copy in the campus DEM and the pourpoint file you used last week, found in the course L drive, data directory, Sheds.gdb. Build a processing model for watershed delineation using the ArcGIS model builder tool. You basically do the steps you followed for last week's exercise, but write them into a model that can conduct all the steps in sequence.

Your model must start with a DEM and pourpoints, and using these create watersheds and vector flowlines.

You should make the input and output data layers, the snap pourpoint distance, and the threshold area required for a streamline as parameters, entered at run time.

The model saves file paths to data in your project, so you need to turn in your model, project, and your geodatabase.  In theory you can do this by exporting a Project Package, as shown in the video to the right. However, the project package works intermittently, for unknown reasons (even to ESRI). If you have problems creating a package, then save using the alternative, zipping the folder that contains all your project parts, including the model toolbox, data, and project, as described in the "zipping all project files" in the resources column to the far right.

Week 6 - Deadlines

Next Monday, before class,

turn in:

  1. A pdf map of your watersheds, that includes the watershed boundaries, stream lines, and an image background,
     
  2. Your ArcGIS Model Builder model and data,
    a) either by zipping the project files (a .gdb, a .tbx, a .aprx, and an index, all within the enclosing directory automatically created by Arc when you start a new project), or
    b) exported as a project package, or as a zipped file for the entire project directory. Make sure the directory includes the gdb that holds your flow direction, flow accumulation, output watersheds, and flowlines referenced by your model, and the model builder model.

Week 6 - Resources

Model Builder Introductory Slides.

Slides on Making MB models portable

A simple Model Builder example video

Model Builder resources from ESRI:

-Quick Tour
-Getting Started Building Models
-Model Builder 101
-Model Builder 202 (this is for an earlier Arc version, but much still applies)

If you have time, you can investigate the ESRI Geoprocessing courses, starting here.
Note that you have to sign in through the UMN account, using your X500 name and login, for access.

Finally, since your model builder lives inside a project, and you should turn in both your data and the model.

The preferred way to share your work is by creating something called an export package as shown in the video below, but there is currently a problem as noted above in the assignment:

Exporting a Project Package to submit to Canvas

Unfortunately, it appears this option is now working intermittently, so another option which should work involves zipping the containing folder, including the toolbox files (.tbx), index, geodatabase, and project file, as shown in the video below:

Zipping all project files to submit to Canvas

Week 7 - Assignment

Mandatory meeting on Monday and Wednesday this week, Class Zoom Meeting Room
Week 7
 - 
Project Roadmap, Flowcharting, Project-Wide Data

Monday and Wednesday in Zoom (Class) - we'll discuss the overall project, analysis, and output. 

1) Re-read the project description, review the general flowchart, create a detailed flowchart for interception sub-workflow.
Carefully re-read the semester project description provided in the first week, and develop a draft flowchart of your analysis. This will likely be much more complete and refined than what you included in your methods draft. You need to think about the spatial operations and order in which they'll be applied, represented by a box and arrows diagram you'll apply. Come to our meeting on Monday prepared to ask questions about anything that's not clear.

We provide a basic flowchart in the resources column to the right, also embedded within the flowcharting exercise below. We will discuss an example flowchart, and on Wednesday provide a refresher on some analysis tools that you'll likely use to solve our problem. 

This flowchart is missing some details. This week you will provide the details for the canopy interception sub-workflow, a small branch of the overall flowchart, you will expand and add details, and verify your sub-workflow is valid by applying it.  Follow the instructions in the Canopy Interception/Net Rainfall Flowcharting exercise here

2) Get Acquainted and Condition the Project-Wide Data
We've provided campus-wide data very similar to those you have been developing, plus some more. All work from here forward will be using these campus-wide data, and NOT those that you have developed for the North Campus Practice area, earlier.

The data are available on the class L drive, in the Data directory, in the WholeProjectData geodatabase. You will have to modify the data layers a bit for your analysis, e.g., modify or add attributes to change units from cm to meters in the soils data, or add a maximum canopy interception attribute, but these are relatively minor.

Layers and important attributes are:
Soils: Type, a text description of the dominant texture. We provide information on infiltration rates for each of the dominant textures in the project description.
SurfacePermeabilityType, indicating if the landcover surface is permeable or impermeable
TreeCanopy: Type, value Dec indicating deciduous trees, value Con indicating coniferous; CanopyHeig, indicating short or tall trees. You will have to add maximum interception/absorption rates for each height/type combination, as per the project description.
BuildingsRoof, values pitched or FLAT (not green roofs on pitched surfaces)
Project_Study_Area: a bounding area, no attributes of note
Pourpoint2020ppid, numeric identifiers for the watershed outlets 
 

Note that there is not a watersheds layer, nor DEM you will have to import those from the previous labs into your geodatabase.

There are also no rainfall layers, you should create these.

Wednesday - Analysis and Tools
We'll review these tools in class, and describe how we might use them in a workflow to solve your primary analysis:

  • Clip function - for data prep
  • Union (in addition to last week)
  • Dissolve, often used after Union
  • Polygon to raster
  • Raster calculator

Week 7 - Deadlines

Before the start of class on Monday, next week

  • Turn in your flowchart exercise, the first draft of your detailed flowchart, as a pdf.
  • Turn in a net interception map, CInt in the example flowchart.  Note that you must show areas where there are no trees with a value of zero interception.
  • Turn in a net rainfall map, that is, a map of rainfall minus canopy interception. This is the layer labeled RAS that result from applying your sub-workflow in the flowcharting exercise. Display/color it by net rainfall values, in meters, for the extent of the study area.

Week 7 - Resources

Week's slides 

Tool Review slides

Example flowchart graphic (vector analysis, then raster)

Video refreshers on common tools (from FNRM3131)

-Selecting and calculating fields for vector layers
-Clip & Intersect tools
-Dissolve function
-Union note that the union function often creates multipart shapes, so you'll need to do the multi-part to single part to separate them before further analysis
-Multipart to singlepart
-Raster Calculator 

You should use the search function as described in the Finding tools in ArcGIS Pro video and search the online ArcGIS Pro documentation, to understand and then apply the:

-Polygon to Raster tool, to convert vector features to rasters, prior to using the raster calculator

Week 8 - Assignment

Monday Mandatory, in-person 
Wednesday Optional attendance

Week 8 -  Maximum surface absorption/infiltration layer creation

Surface absorption layer: Calculate maximum surface absorption, and create a flowchart of your process that combines the landcover, buildings, and soils layer to create this maximum surface absorption layer. This layer will have a value of zero for the impervious landcovers (roads, sidewalks) and a zero for buildings, and the maximum soil infiltration layer for the remaining locations. 

Students in 4295 ARE NOT REQUIRED to make a Model Builder model for this workflow. Students in 5295 DO have to eventually make a Model Builder model for this workflow. Don't be confused. Optionally, for extra credit, 4295 students can make a model builder model that calculates your maximum surface absorption layer.

Turn in a pdf map of the maximum infiltration layer, and a flowchart of your sub-workflow to calculate maximum absorption/infiltration, as described in the deadline column to the

Week 8 - Deadlines

By next Monday, before class, turn in:

  1. Map of the maximum surface absorption layer you created that infiltration across the surface, colored by m absorption per sq-m surface area, with the usual title, legend, scale bar, and other map elements.
  2. Flowchart of your maximum infiltration workflow, as a pdf.

Week 8 - Resources

Week's slides:  Calculate Maximum Infiltration Layer Manually, and Net Rainfall in Model Builder (MB)

Videos:

Select table records based on values, manually, or in Model Builder 

An example video of using a code block to shorten the number of steps calculate a field value for a feature, based on other column values for that feature.

Another brief example on else-if python code block, an alternative to multi-step selection, but more complicated

Short video on a strategy to use when MB doesn't display an input file in a subsequent tool in a workflow.

Week 9 - Assignment

Monday Mandatory, in-person
Wednesday Optional attendance


Week 9 - 
More Tools, Calculating Net Runoff for 2.5 cm Rainfall

We'll introduce the general steps needed to create a net runoff layer. This will involve combining the three branches of analysis you've already conducted - net rainfall (after interception), maximum surface absorption, and watersheds. Most of the work will be with tools you already know, but we will introduce a few new tools, needed to aggregate over the watersheds:

  • Zonal statistics for Raster
  • Summary Statistics for Vector

 You should apply the combined workflow, and calculate net runoff for your two watersheds, based on current surface conditions and a 2.5 cm storm.

Week 9 - Deadlines

By next Monday, before class, turn in two maps and a spreadsheet:

  1. Map that includes which shows the net runoff layer for a 2.5 cm rainfall event for each watershed.  The net rainfall is the layer that comes from rainfall, minus interception, minus surface absorption, with negative values set to zero. Include watershed boundaries on the map. 
  2. A spreadsheet or pdf table with a row for each watershed, with columns of your average interception per watershed in cm, average maximum infiltration in cm, and summed aggregate runoff, in cubic meters, for each of the target watersheds.

Week 9 - Resources

Week's slides, Reclassification and Summarize by Zones to table, here

Example here on how to summarize or calculate other zonal statistics across a  layer to a table.

2nd example here of how to summarize across a vector polygon layer/table.

Long(ish) video here with a general hint at how to structure your geodatabases for easier debugging in Model Builder (MB),  and I walk through a MB model that roughly follows the earlier provided general flowchart.

Video here on stepping through a MB model, running a single tool at a time, while debugging.

Week 10 - Assignments

Optional attendance, both Monday and Wednesday

Week 10 - Calculate Runoff for 5 cm Rainfall, start Report Draft 3

Apply your analysis workflow to estimate runoff for the 5 cm rainfall event, analogous to what you produced last week, just at a higher rain level. Create maps of 1) interception and 2) runoff, and a table, produce pdfs, and turn these in.

Start report draft 3. Your report draft 3 should include revisions of your introduction and methods, and a new results section describing your net runoff results for the 2.5cm and 5cm rainfall-runoff for conditions as they are now. The results section should be 750 to 2000 words of text, about the same as 2 to 4 pages, not counting figure or table captions. You'll write this by expanding on your Story Map for your project.

Note that the full report draft 3 is due in 2 weeks, but we have you turn in parts this week and next week. 

Next week you turn in maps of the 5 cm net interception and of net runoff.  You'll need these for your full analysis. Also, turn in a table showing net runoff summed for your watersheds - these will all be included in your report draft.

Report draft 3 is due in two weeks, and should include:

1) A revised introduction and methods sections, based on previous grading/comments. You should include  two flowcharts,  
- a detailed flowchart of your current-condition analysis workflow (before landscape modification/mitigation)  in an appendix, not in your methods section, and
- a  generalized flowchart of your workflow above, in your methods section, showing the main branches of analysis.

The detailed flowchart is each step, with the names of the ArcGIS tools and all your intermediate layers. Be sure to keep the fonts large enough to easily read. You will likely have to break the flowchart up, into several sections, on separate pages.

The generalized flowchart is the main branches, combined to their general topics and actions, e.g., a branch to develop net rainfall inputs, a branch to develop surface permeabilities, a branch for watersheds, etc. This will fit on one page at most, and is appropriate for the body of the report, in your methods section. It should be even more generalized than the example flowchart we provided for you earlier.

2)  A results section describing your findings for the base case rainfall for both 2.5 and 5 cm rainfall events.  The results section should include the runoff volumes in the format specified in the project description.

Your results section should also include maps of your estimated runoff under 2.5 and 5 cm rainfall.

Remember that the target audience is the set of administrators in charge of the University's physical environment and stormwater management. They don't know anything about GIS software, or GIS theory, or any jargon on geospatial analysis terms. You need to provide enough detail so that an intelligent non-expert will understand what you did, and be convinced that your methods are sound and your recommendations are valid.

Week 10 - Deadlines

By next Monday, turn in, as pdfs: 

1) Map of 5 cm net rainfall (note, this is a late change, if you've already turned in net interception, or planned on it, either will be acceptable),

2) Map of net 5 cm storm runoff; maps should be appropriately symbolized across the range of the main layer,

and

3a) Either a table showing net runoff, in cubic meters of water, by watershed for each of the 2.5 and 5 cm storms,
or,

3b) annotation on the runoff map showing the 2.5 and 5 cm runoff amounts, clearly labeled.

Week 10 - Resources

The 5 cm analysis is just a repeat of the workflow you did with the 2.5 cm rainfall event, except now you are using a 5 cm rainfall event.

Week 11 - Assingments

Monday Mandatory
Wednesday Optional attendance


Week 11 -  Discuss and implement strategies for mitigation, create "new" forest canopy, your first version of the analysis, and results section of your report third draft.

We can mitigate by adding forest canopy, changing impervious surfaces to pervious surfaces, adding sinks, converting roofs to green roofs, and adding underground storage.  We will discuss general strategies for adding mitigation, and walk through one workflow for canopy addition. Your tasks will be:

1) Create a new forest canopy layer. Digitize points, buffer, clip/union with the original trees layer combine to create a modified canopy layer that is part of your 2.5 cm mitigation recommendations, and use this to calculate both a new net rainfall interception layer, and the cost of adding new canopy. 

Remember, your new canopy needs to be combined with the existing canopy, and cannot overlap with buildings, so you'll have to union/combine your canopy generated by buffering points with the existing digitized canopy, and clip the canopy layer with buildings.  

You need to calculate costs for the new canopy, and you have to pay for the total new canopy planted, even if it overlaps with the existing canopy. Hence your cost is based on the total new canopy area from your buffering, before you union it with existing canopy or clip it with buildings.

Create a pdf map that shows the combined canopy layer (old and new), highlighting what you added/changed compared to the old layer (you can do this by displaying the old layer on top of the new combined layer, using different shades). Include text listing the original canopy area, the new canopy area, and the new canopy cost, by watershed, somewhere on the map.

2) First version of results section for report draft 3 - you should turn in your first draft of the results for the "as is" conditions, 2.5 cm and 5 cm rainfall (no mitigations changes).  This is your initial draft, you will turn in a self-revised draft next week (no feedback by instructors between these two drafts). Note that this version DOES NOT HAVE TO INCLUDE revisions of the Introduction and Methods sections, but the version you turn in next week SHOULD BE COMPLETE, AND INCLUDE REVISIONS TO ALL PARTS.

Week 11 - Deadlines

Before class on Monday next week, turn in:

  1. A pdf map showing your old and new canopy layers towards mitigation of a 2.5 cm rainfall events.
  2. Your first attempt at a results section for your third report draft, as a modification to your story map, and an exported pdf - this is your first attempt, you will self-revise and turn in a second copy next week, and you won't get feedback on this first submission before next week. My purpose here is to spur you to write a draft of the results, then seriously revise your own draft after writing the first.

Week 11 - Resources

Week's Slides, Buffering and strategies for "Creating" new canopy, and calculating rainfall mitigation needs.

Video here of one workflow and MB model to add tree canopy

Document describing strategies and examples for mitigation planning

Week 12 - Assignment

Week 12 - Thanksgiving, and begin mitigation rain gardens and impervious surface

There are four primary ways besides increase canopy we'll use to mitigate runoff: convert impervious to pervious surfaces, rain gardens, green roofs, and underground storage. You should start work on rain gardens and pervious pavement before leaving for Thanksgiving, and continue after returning. Note that the rain gardens and impervious surface layers and calculations should be completed by the Wednesday after Thanksgiving, so you should work on some early this week and early the week after Thanksgiving.

1) Adding rain gardens. These should be placed near flowlines, in parking lots or grassy/flat areas, but subject to restrictions noted in the detailed project description document (e.g., near existing flowlines, not on roads or sidewalks, not consuming too much of parking lots, and others).  You should examine and place rain gardens, starting with large flat grassy areas, parking lots, and plazas. 

There are two complications with rain gardens.  First, they need to be near flowlines, so you need to place them accordingly. Second, they are limited to a 0.5 meter depth, so you need to make sure you don't over or under size them, and give them too much or too little credit for water mitigation. If you make the rain garden too big for the upstream area, it won't fill up for the 2.5 cm storm, and so will be too costly.  If it is too small, it won't absorb all the upstream water. Rather than go through many analysis iterations, your best approach is to estimate runoff based on average runoff conditions and upstream area, and make a rain garden large enough to capture that amount, assuming a 0.5m deep rain garden.  You can then verify the amount captured during a run, and adjust the calculations as need be.

2) Converting impervious surface to pervious surface. You'll have an estimate of how much rain gardens take up from the above analysis, so have an idea of how much additional volume you'll need to reduce, by subtracting the rain garden storage from your "as is" conditions. This will give you an estimate of the amount of additional water you need to process on the landscape. You can then calculate how much area in impervous surface this will correspond to, given the average soil maximum infiltration rates.  You then can make of copy of your original impervious surface, and split new polygons from existing features  (e.g., roads, sidewalks, plazas) and make them pervious. 

You will have to calculate the costs of impervious to pervious conversion, by first calculating the area of converted polygons, and multiplying by the cost per area listed in the project description.

Week 12 - Deadlines

Turn in the Wednesday after Thanksgiving, before Class: 

Turn in the following maps for the 2.5 cm mitigations: 

1) a map of rain gardens, overlain by the flowpath vectors, a hollow fill watershed layer, and with an image background, and

2) a map of converted pavement, from impervious to pervious, overlain by the flowpath vectors, an outline watershed layer, and with an image background.

You don't need to calculate areas, costs, or other attributes, I just want to see some progress on this mitigation work. 

3) Your final report draft three, a pdf exported from your modified updated story map, with revised introductions, methods, and a results sections.

Week 12 - Resources

Week's slides here

Video on strategies for adding rain gardens, balancing capacity to runoff, and downstream accumulation of overflow from upstream rain gardens.

Video on strategies for converting impervious surfaces to pervious surfaces

Converting impervious surfaces to pervious surfaces will likely require splitting polygons, often splitting pieces and then merging, covered in general videos here:

Remember to assign new table values reflecting the switch from impervious to pervious

Week 13 - Assignments

Optional attendance both Monday and Wednesday
Week 13 -  Final mitigations and Final Runs

Add green roofs. You may still have positive runoff after adding rain gardens and pervious surface, so you may need to add green roofs.  Any flat roof can be converted to a green roof, they will absorb all the rainfall of a 2.5" storm.  This is an expensive way to reduce runoff, and is limited to just the roofs, but is a less expensive alternative than underground storage. 

The amount of runoff reduction is easy to calculate - the area of the roof in square meters, multiplied by 2.5 cm (or 0.025 meters), for cubic meters of outflow reduction.  You don't need to do another full application of your geoprocessing workflow, because of our assumptions of no absorption of overland flow. You can calculate the rainfall volume that falls on any converted roof, and subtract that amount from the runoff calculated with your rain gardens and pervious surface present.

You must calculate the cost, on a per surface area basis for converted rooftops.

Underground Storage. After subtracting the reduction in runoff due to green roofs, you may still have a positive outflow. If that is the case, then you can simply designate an amount of underground storage.  Again, you don't need to re-run your workflow, you can simple designate the amount of underground storage as that left over after everything else, and calculate your required storage volumes.

You should also calculate the following numbers to include in your report, organized in one or more tables, and also discussed in the results section

  • Added canopy area,
  • Total added canopy cost,
  • Impervious to pervious surface conversion area,
  • Total surface conversion costs,
  • Total area in added rain gardens,
  • Total rain garden cost,
  • Green roof area,
  • Green roof cost,
  • Total underground storage volume,
  • Total underground storage cost
  • Total Cost, all mitigations

Week 13 - Deadlines

Turn in by Monday, next week, before the start of class:

1) map showing the rain gardens, with flowlines and watershed boundaries (not filled), an image background, with a table showing the surface area of the rain garden in sq. m., the maximum volume of water stored for each rain garden in cubic m., the upstream area, the upstream water produced under 2.5 cm of rainall and 5 cm rainfall, and the cost of the rain garden

2) a map showing new pervious surfaces, with watershed boundaries (not filled), an image background, and an annotation or table showing the total area converted to pervious surface, and the total cost.

3) Data tables for your reports, as specified in the report guidelines and problem statement. You should be able to nearly completely fill these out, but whatever your progress, complete them as much as you can, and turn them in as a pdf.

Week 13 - Resources

Video, calculating summed area and cost of green roofs

Video, workflow calculating rain garden costs, converted pervious surface areas and costs.

Week 14 - Assignments

Optional attendance Monday and Wednesday Class Zoom Room

Week 14 - Continue Analysis Under Modifications

Project work, modifications and analysis to mitigate runoff for prescribed rainfall amounts

Week 14 - Deadlines

By Next Monday, at the Start of Class, 

  • Not a dang thing

Week 14 - Resources

None

Week 15 - Assignment, Write Report

Optional attendance Monday and Wednesday Class Zoom Room

Week 15 - Work on final analysis and final report

Finals Week - Assignments

No class final; all assignments due by Wednesday, December 23, 11:59 pm

You should put your final geodatabases on the L:drive, the 4294 share directory, in a directory with your name and the word "final" as part of the directory name. You should also submit a note to the class Canvas site for the final data, letting me know you have transferred the data to the L drive.

You should complete your Story Map, and turn in a pdf export of your final report on the class Canvas site, in the final report section. Don't worry about formatting the pdf if the export garbles things a bit, I'll be reviewing/grading based on the Story Map, although recording notes on your pdf.

Your final report should include the information provided in previous drafts, plus a description/discussion of the changes for reducing runoff to zero under the different rainfall amounts. This should include appropriate maps/figures. You should include an appendix section for figures that or too complex or for maps or data that would unnecessarily lengthen the main story, but which you wish to include for completeness (e.g., your detailed flowcharts are too complicated for the main description, but could be included in appendix).

I would expect the following figures in your final report main body:
- Study area/watershed boundary overview, labeled to identify the two watersheds so that you may refer to them individually in the results/discussion,
- Two or more figures showing base conditions (buildings, land cover, tree canopy, soils, flowpaths),
- Composite maximum surface absorption, for base conditions. This is the amount that could potentially absorb/infiltrate into the ground surface, combining the impacts of impervious areas, buildings, and soils
- Runoff for each of the base conditions (2.5 and 5 cm rains),
- Two or more figures showing modifications for your 2.5 cm mitigation, identifying new canopy, rain gardens, green roofs, and pervious conversions. These won't all clearly fit on a single figure, and typically require two or three figures,
- Two or more figures as above showing modifications for your 5 cm mitigations, as above
- A raingarden map with the raingarden polygons shown, their corresponding pourpoints, labeled by unique IDs/names, that correspond to the unique IDs/names of the new raingardens. 
- There may be a second raingarden map to that above if you have two different sets of raingardens, one for 2.5 mitigations and one for 5 cm rainfall mitigations.
- Composite maximum surface absorption, for 2.5 cm modified conditions. This is the amount that could potentially absorb/infiltrate into the ground surface, combining the impacts of modifications on impervious areas, buildings, and soils.
- Same as line above, for 5 cm modified conditions
- 2.5 and 5 cm runoff under modified conditions
- Tables, as described in the project handout, that show rain garden details, mitigation amounts and details, and costs.

You will likely need to modify any figures you turned in during the semester, increasing some font sizes to be readable, including scale bars, north arrows, and legends.  They should not have your names on the figures. Each figure should be numbered, and have a descriptive caption below the figure. 

You need tables as identified in the project description, matching numbers in the table to your rain garden pour points in your mitigation figures.  Make sure the table entries to not carry ridiculous numbers of significant figures. Round costs to the nearest dollar, watershed volumes to the nearest cubic meter, and surface runoff to the nearest 0.001 meters.

You also need to turn in your data. You should create a directory with your name on the L:drive, 4295share directory, and copy three final geodatabases:

1) A geodatabase with the word "Current" in the name that contains data used for calculating your "current condition" runoff for 2.5 cm and 5 cm storms. These are the data you used at the start of your workflow, that is, after you added columns or modified the base data we gave you, but before you started your runoff workflow.  Don't include intermediate layers. The geodatabase should include:

  • your final "runoff" layers, that is, the layers that you summed by watershed to get the total runoff volume for the study areas, 
  •  watersheds,
  • flowpath layer
  • canopy
  • impervious/pervious surface
  • buildings
  • rainfall layers 

2) A geodatabase with "2p5cm" in the name, which includes the modified layers used to obtain your 2.5 cm mitigation of runoff. You should include the modified layers for a 2.5 cm storm only, not the original layers (these are in the database above). Turn in the following:

  • your final "runoff" layers, that is, the layers that you summed by watershed to get the total runoff volume for the study areas, 
  • flowpath layer
  • layer with only the new canopy you added
  • composite canopy layer, combining the old and new canopy
  • layer of areas changed from impervious to pervious
  • modified  composite impervious/pervious surface, after you've integrated the changes, to show maximum infiltration capacity
  • modified buildings, with roof attribute values changed to identify buildings with green roofs
  • rain garden layers, the rain garden polygons, and each corresponding pour point
  • watersheds, calculated with your new rain garden pour points

3) a geodatabase with the "5cm" in the name, including all layers similar to those above, but for your 5 cm rainfall mitigations.

DO NOT include "extra" or intermediate data in your geodatabase, and make sure the data layers are clearly named.

Finals Week - Deadlines

Wednesday, Dec. 22rd by 11:59 p.m., complete your final report/story map, and export it to a pdf to turn in via Canvas, and submit a copy of your final, cleaned data (no extra layers) to the 4295Share\yournamefinaldata subdirectory